References
- [BL00]
- S. Billey and V. Lakshmibai. Singular loci of Schubert varieties. Vol. 182 of Progress in Mathematics (Birkhäuser Boston, Inc., Boston, MA, 2000); p. xii+251.
- [BP05]
- S. Billey and A. Postnikov. Smoothness of Schubert varieties via patterns in root subsystems. Adv. in Appl. Math. 34, 447–466 (2005).
- [CK23]
- I. Charton and L. Kessler. Monotone Symplectic Six-Manifolds that admit a Hamiltonian GKM Action are diffeomorphic to Smooth Fano Threefolds (2023), https://arxiv.org/abs/2308.10541.
- [CK99]
- D. A. Cox and S. Katz. Mirror symmetry and algebraic geometry. Vol. 68 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, RI, 1999); p. xxii+469.
- [GKZ23]
- O. Goertsches, P. Konstantis and L. Zoller. Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions. Compos. Math. 159, 2149–2190 (2023).
- [GKZ24]
- O. Goertsches, P. Konstantis and L. Zoller. Low-dimensional GKM theory. In: Group actions and equivariant cohomology, Vol. 808 of Contemp. Math. (Amer. Math. Soc., [Providence], RI, 2024); pp. 113–146.
- [GKM98]
- M. Goresky, R. Kottwitz and R. MacPherson. Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, 25–83 (1998).
- [GZ00]
- V. Guillemin and C. Zara. Equivariant de Rham theory and graphs. In: Surveys in differential geometry, Vol. 7 of Surv. Differ. Geom. (Int. Press, Somerville, MA, 2000); pp. 221–257.
- [GZ01]
- V. Guillemin and C. Zara. 1-skeleta, Betti numbers, and equivariant cohomology. Duke Math. J. 107, 283–349 (2001).
- [GSZ12]
- V. Guillemin, S. Sabatini and C. Zara. Cohomology of GKM fiber bundles. J. Algebraic Combin. 35, 19–59 (2012).
- [Iri17]
- H. Iritani. Shift operators and toric mirror theorem. Geom. Topol. 21, 315–343 (2017).
- [Kum96]
- [LS17]
- C.-C. M. Liu and A. Sheshmani. Equivariant Gromov–Witten invariants of algebraic GKM manifolds. SIGMA Symmetry Integrability Geom. Methods Appl. 13, Paper No. 048, 21 (2017).
- [MO19]
- D. Maulik and A. Okounkov. Quantum groups and quantum cohomology. Astérisque, ix+209 (2019).
- [MS12]
- D. McDuff and D. Salamon. $J$-holomorphic curves and symplectic topology. Second Edition, Vol. 52 of American Mathematical Society Colloquium Publications (American Mathematical Society, Providence, RI, 2012); p. xiv+726.
- [MFK94]
- D. Mumford, J. Fogarty and F. Kirwan. Geometric invariant theory. Third Edition, Vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] (Springer-Verlag, Berlin, 1994); p. xiv+292.
- [WROM86]
- R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay. Constant time generation of free trees. SIAM J. Comput. 15, 540–548 (1986).